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1 Preface

次のような定理が知られている.

定理 1.1 (Hasseの定理) 多変数の同次 2次方程式がすべて零以外の整数解
をもつということと,その方程式が実数解をもち,同次に各素数 pに関して p

真数解をもつということは同値である.

この定理の特別な場合として,次の系が得られる.(初等的に)

系 1.2 a ∈ Zであり,任意の素数 pに対して,x2 ≡ a (mod p)なる xが存在

するならば,x2 = aなる x ∈ Zが存在する.

本文では,この系を少し強めた形で,Hasseの定理を経由せずに証明したいと
思う. ある場面で,系 1.2の結果が重要になり,この結果に Hasseの定理のよ
うな定理を介する必要があるのかと疑問に思った事が動機です.

2 平方剰余の相互法則

この節では,必要な定義や定理を挙げていく.

定義 2.1 (Legendre記号) n 6≡ 0 (mod p), p :素数に対して,(
n

p

)
= 1,

(
n≡ x2 (mod p)なる xが存在する時.

)
(

n

p

)
= −1,

(
n≡ x2 (mod p)なる xが存在しない時.

)

により,
(

n

p

)
= 1を定義する.この記号

(
n

p

)
= 1は,Legendre記号と呼ば

れる.

定理 2.2 (Fermatの小定理) 自然数 nと素数 pに対し,

np ≡ n (mod p)

が成り立つ. 特に,p |/nであれば,np−1 ≡ 1 (mod p).

1



証明

n = 1で成り立つのは明らか。
n = kで成り立つと仮定する。

(k + 1)p =
p∑

i=0

pCik
iで, pCiは 1 ≤ i ≤ p− 1に対して pの倍数になるから

(k + 1)p ≡ kp + 1 ≡ k + 1 (mod p)よって a = k + 1でも成り立つ

よって数学的帰納法により任意の aに対して成立する。

また,定理の後半部分はこれから直接分かる。
証明終

定理 2.3 (原始根の存在) 任意の素数 pに対し,ある g (原始根と呼ばれる)が
存在して,gn ≡ 1 (mod p) ⇔ p− 1 | n

証明は省略します.この定理より, (mod p)で見た時,1, g, g2, g3, · · · , gp−2は,1, 2, 3, · · · , p−
1の並べ替えになっています.

定理 2.4 (Euler規準)
(

n

p

)
= n

p−1
2

証明

定理 2.3より,原始根を gとすると,任意の nに対して,∃e, n ≡ ge (mod p)
n = x2 (mod p)に解がある⇔ ge = (gd)2に解がある⇔ e ≡ 2d (mod p− 1)
に解がある⇔ 2 | e ⇔ n

p−1
2 ≡ 1 (mod p)

証明終

定理 2.5
(

n1n2 · · ·
p

)
=

(
n1

p

)(
n2

p

)
· · ·

Euler規準より明らか.
さて,次の定理でこの節は終わりである.

定理 2.6 (平方剰余の相互法則) 奇素数 p, qに対して

•
(−1

p

)
= (−1)

p−1
2 (平方剰余の第 1補充則)

•
(

2
p

)
= (−1)

p2−1
8 (平方剰余の第 2補充則)

•
(

p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 (平方剰余の相互法則)

証明は省略する.
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3 定理の証明

この節で,次の定理を証明する.

定理 3.1 高々有限個以外の素数 pに対して
(

n

p

)
= 1であるならば,nは平

方数である.

nを割り切る最大の平方数を dとし,n′ =
n

d2
とする. nについて定理を示す

事と n′について定理を示す事は同値だから,始めから nとして nを割り切る

平方数が 1以外に無い物を取っておけば良い. この時,a, b = 0or1および奇素
数 p1, p2, · · · , pnを用いて,n = (−1)a2bp1p2 · · · pl または,n = (−1)a2b と書

ける.

後者については p ≡ 3 (mod 4) なる素数 p に対して
(−1

p

)
= −1,p ≡

(mod 8)なる素数 pに対して
(

2
p

)
=

(−2
p

)
= −1である.

前者については p ≡ 1 (mod 8p2 · · · pl)かつ,p ≡ g (mod p1)(ただし g は

(mod p1)の原始根)となる素数 pに対して,(
n

p

)
=

(−1
p

)a (
2
p

)b (
p1

p

)(
p2

p

)
· · ·

(
pl

p

)

ここで,
(−1

p

)
=

(
2
p

)
= 1であり,さらに,

(
p1

p

)
=

(
p

p1

)
=

(
g

p1

)
= −1,

(
pi

p

)
=

(
p

pi

)
=

(
1
pi

)
= 1, (i ≥ 2)

であるから,
(

n

p

)
= −1

よって,いずれの場合にせよ,nがそれを割り切る 1より大きな平方数を持
たない時,n = 1で無いならば,ある a, M(aとM は互いに素)があって,p ≡ a

(mod M)なる素数 pに対して
(

n

p

)
= −1

最後に次の定理を用いれば証明が完結する.

定理 3.2 (Dirichletの算術級数定理) aと nが互いに素な整数である時,p ≡
a (mod n)なる素数が無限に多く存在する.

以上により,nが平方数でないならば,
(

n

p

)
= −1なる素数 pが無限に多く

存在する事が分かる. これによって,定理 3.1の証明が完了する.
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4 n乗数の場合

これを証明した後で,次のような予想を立てた.

予想 4.1 a ∈ Z, n ∈ N であり, 高々有限個以外の素数 p に対して,xn ≡ a

(mod p)なる xが存在するならば,xn = aなる x ∈ Zが存在する.

実は,これは成り立つのだ！証明には,類体論を使った. 類体論の細部をここ
で説明するのは不可能なので,ここではそのおおまかな流れを書く事にする.

aが,n乗数では無いとして,どんな xに対しても xn 6≡ a (mod p)なる pが

無限に多く存在する事を示せば良い。

定理 4.2 p ≡ 1 (mod n), p |/mの時,
xn ≡ mなる xが存在する⇔ m

p−1
n ≡ 1 (mod p)

証明

原始根の存在から簡単に導かれる.
証明終

定理 4.3 K/kをH上の類体とし,A/Hを kのイデアル全体の類別とする.こ
の時

A/H ∼= Aut(K/k)

が成り立ち,その対応は,
C(p) ←→ z

ただし,zは,
AN(p) ≡ Az (mod p)(∀A ∈ K)

なる置換.

これが,類体論で非常に有名なArtinの相互律である.

定理 4.4 A/H の各類に,1次の,つまり N(p) = pなる素イデアル pが,無限
に多く存在する.

これは,いわばDirichletの算術級数定理を一般の代数体に拡張した物である.

定理 4.5 pをmに含まれない素数とし,f を

pf ≡ 1 (mod m)

なる最小の正指数,φ(m) = fgとすれば,m分体 Q(ζ)において,

p = p1p2 · · · pg

と分解される.各素因子 pi は f 次である.
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さて,準備が整った. 示したいのは次の定理だ.

定理 4.6 a ∈ Z, n ∈ N であり, 高々有限個以外の素数 p に対して,xn ≡ a

(mod p)なる xが存在するならば,xn = aなる x ∈ Zが存在する.

証明

aを n乗数では無いとする.dを,nの約数で d
√

aが整数になる物のうち最大の

整数とする.N =
n

d
,A = d

√
aとする.aが n乗数でないので,N ≥ 2

1の原始 N 乗根を ζ,
N
√

A = αとして,体拡大

Q ⊂ Q(ζ) ⊂ Q(ζ, α)

を考える.
Q(ζ, α)/Q(ζ)は Abel体であり

Aut (Q(ζ, α)/Q(ζ)) = {α → αζk | k = 0, 1, · · · , N − 1}

従って,任意の kに対し,Q(ζ)の 1次の素イデアル pであって,N(p) = p,

αp ≡ αζk (mod p)

なる物が無限に多く存在する.特に k = 1とすると,

αp ≡ αζk (mod p)

A
p−1
N ≡ ζ (mod p)

a
p−1

n ≡ ζ (mod p)

よって,
a

p−1
n 6≡ 1 (mod p)

さらに,pはN 分体において 1次の素イデアルを因子に持つので,
p ≡ 1 (mod N)従って p ≡ 1 (mod n)
これらは,aが pを法として n乗数で無い事を意味している. さらに,この
ような pは無限に多く取れるので,定理が成り立つ.

証明終
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5 後書き

この結果は,いかにも成り立ちそうではあったが,証明は大変だった. 実際
はもっと初等的に出来るのかもしれない. 得られた定理は,なかなか綺麗な物
だと思った.

n乗数の場合に挑んで,暫く何も見えてこなかったので,ヒントを求めて類
体論を少し勉強してみたら,証明出来た.この証明を通して, かなり類体論に
興味を持ったので,もっと勉強してみようと思います. 皆さんも,この文を読
んで,なんとなく興味が沸いたなら,是非勉強してみて下さい

参考文献としては,代数的整数論 (高木貞治 著)などがあります.
質問や感想などは,nisimotomasaki@funifuni.netへ御願いします.
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