
ルービックキューブの可解性

高校 2年 4組 37番 西本将樹

1 はじめに

本日はわざわざ本校文化祭にお越し頂きありがとうございます。早速、この記事には何が書

いてあるのかという事について。ルービックキューブという物を皆様ご存じでしょうか？そう

です。あの立方体の形をしたパズルです。(図 1) 各面を回す事でそれぞれのパーツの向き、位

置を変化させ、図 1の状態にするパズルです。題名の通り、このパズルに解があるか解が無い

図 1: ルービックキューブ

かという事について考えようと思います。

さて、解があるとか無いとか言っても分かりにくいと思うので、図 2～4を見て下さい。そ

れぞれ、1パーツだけの向きが入れ替わった状態、2つのパーツの位置が入れ替わった状態で

す。（裏側から見た状態は変わってない物とします）実は、この状態から各面をどういう順に

何回回しても、図 1の状態にする事は出来ません。勿論、これは実際どういじくってみても出

来そうに無いからそういうのでは無く、後にちゃんと理論的に不可能である事を証明するので

ご安心を。このような状態を、解けない状態という事にします。(後にきちんと定義します) ま

た、予備知識として必要なものは極力減らした、というより、ほとんど無いようにしたつもり

です。色んな方に読んでもらえたら幸いです。

2 準備

まず用語を用意したりして、扱う対象をきちんと整理しましょう。
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図 2: 解けない状態の例 1 図 3: 解けない状態の例 2 図 4: 解けない状態の例 3

定義 2.1 各面の中心のパーツをセンターキューブ、立方体の頂点の部分にあるパーツをコー

ナーキューブ、立方体の辺の部分にあるパーツをエッジキューブと言います。(図 5,6,7) また、

単にセンター、コーナー、エッジと言う場合もあります。コーナーキューブ全体の集合を C

エッジキューブ全体の集合を E で表す事にします∗1。

つまり、ルービックキューブは、6個のセンターキューブと 8個のコーナーキューブと 12個

のエッジキューブから成ります。さて、6つの面にも名前をつけておきましょう。手前にある

図 5: センターキューブ 図 6: コーナーキューブ 図 7: エッジキューブ

面 F面、後ろにある面を B面、右側にある面を R面、左側にある面を L面、上側にある面

をU面、下側にある面をD面という事にします∗2∗3。

また、F 面を 90◦ 時計回りに回転させる事を F と表し、F 面を 90◦ 反時計回りに回

転させる事を F ′ と表し、F 面を 180◦ 回転させる事を F2 と表す事にします。同様に、

B, B′, B2, R, · · · , D′, D2の記号も決めます∗4。

定義 2.2 キューブの状態とは、図 1の状態から、エッジとコーナーを適当に位置、向きを変

えてつけ直した物とする。状態全体の集合を X と表す。特に、６面完成状態（図 1）を☆で

表す。

∗1 集合というのは、単に何かしら物を集めた物だと思っておいて差し支えありません。
∗2 それぞれ、Front,Back,Right,Left,Up,Downの略。
∗3 キューブ全体を持ち替えたりして向きが変わるごとに、それぞれの指す面は変わります。本文では基本的にこ
れを固定して考えます。

∗4 これは割と一般的に使われている記号のようです
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図 8: 面の呼称、回転記号

センターを考えないのは、どの面を回してもセンターの位置は変わらないからです。例えば、

図 9は状態ではありません。(同じエッジが 2箇所に入ってるので)

図 9: 状態ではありません

定義 2.3 P ∈ X から、F, B, U,D, R,Lの回転を繰り返して∗5状態 Qに出来る時、P と Qは

同値であるといい、P ∼ Qと表す事にする。また、P ∼ ☆である時 P を解ける状態である

といい、そうでない時解けない状態であるという。

では、本題に行きましょう。

3 エッジの向き

この章では例えば図 2の一番左の状態などが解けない状態である事を示します。その為に、

各キューブに対して、向きという物を定義しましょう。

定義 3.1 状態 P において、一つのエッジキューブ e ∈ E に対して、もしそのキューブ

を F, B,U,D の回転のみによって正しい∗6位置に移動した時に、正しい向きであるならば

α1(P, e) = 0, そうでない時 α1(P, e) = 1 とする。α1(P, e) を、e の向きという事にする。

∗5 F ′, F2などは、F を 3回、2回行った物と考えられるので、可解性を問題とする時考える必要はありません
∗6 そのパーツが 6面完成状態におけるそのパーツと同じ位置、向きにある事を言います
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f(P ) =
∑

e∈E

α1(P, e)∗7を、状態 P におけるエッジの向きの和と言う事にします。

向きが上手く定義されている、つまり、どのように F,B, U,Dの回転を繰り返して正しい位置

に移動しても、正しい向きであるか正しくない向きであるかは変わらない事は、簡単に確かめ

られます。向きに対して、次の性質が成り立ちます。

性質 1 状態 P に F, B, U,D のいずれかの回転をした状態を Qとすると、どのエッジ eに対

しても α1(Q, e) = α1(P, e)

性質 2 状態 P に Rまたは Lの回転をした状態を Qとするとき、回転面に含まれるエッジ e

に対してのみ、α1(Q, e) ≡ α1(P, e) + 1 (mod 2)∗8

これらは非常に簡単に確かめられるので、各々確かめてみて下さい。さて、これから直ちに次

の定理が得られます。

定理 3.2 P ∼ Q ⇒ f(P ) ≡ f(Q) (mod 2)

これを示すには Qが P から F, B, R, L, U,D のいずれかを 1回した状態である時について示

せば十分です。複数回の回転を行っている場合は、その繰り返しで証明できます。

証明

Qが P に F, B,U,D のいずれかをした状態である時 性質 1 より全てのエッジ e に対して

α1(P, e) = α1(Q, e)であるから、

f(P ) =
∑

e∈E

α1(P, e) =
∑

e∈E

α1(Q, e) = f(Q)

Qが P に R, Lのいずれかをした状態である時 性質 2より、ちょうど 4つのエッジ eに対し

て α1(Q, e) ≡ α1(P, e) + 1 (mod 2),他のエッジに対して α1(P, e) = α1(Q, e)である

から、

f(Q) =
∑

e∈E

α1(Q, e) ≡ 4 +
∑

e∈E

α1(P, e) ≡ f(P ) (mod 2)

証明終

直ちに次の系が得られる。

系 3.3 f(P ) ≡ 1 (mod 2)であれば状態 P は解けない状態である。特に図 2は解けない。

このように、解けない状態である事を確かめる一つの方法が得られた。

∗7 X

e∈E

α1(P, e)は、全てのエッジに対して α1(P, e)の値を合計する。という意味です。

∗8 a ≡ b (mod p)とは、a− bが pの倍数であるという意味です。
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4 コーナーの向き

エッジの向きについて、2で割った余りで考える事により、上手く向きが定義出来ました。

コーナーの向きは、実は 3で割った余りで考えてやる事により、図 3のような状態が解けない

事を示す事が出来ます。少し向きの定義に工夫が必要になります。では、やってみましょう。

定義 4.1 状態 P において、コーナーキューブ c ∈ C は、F2, U,D の回転を繰り返す事によ

り、正しい位置に移動する事が出来る。この時のコーナーの向きが正しい向き (図 10) であ

る時に、α2(P, c) = 0、正しい向きから時計回りに色が入れ替わった向き (図 11) である時

に、α2(P, c) = 1、正しい向きから反時計回りに色が入れ替わった向き (図 12) である時に、

α2(P, c) = 2とする。状態 P におけるコーナーの向きの和を g(P ) =
∑

c∈C

α2(P, c)とする。

図 10: 向き=0 図 11: 向き=1 図 12: 向き=2

前と同じように、α2(P, c)が、どの順に F2, U,D の回転を行うかに依らない事は、U面また

は D面の色を考えれば簡単に確かめられます。さて、前と同じように、どの面の回転によっ

ても g(P )の値が (mod 3)で保たれる事を示したいと思います。今度はちょっとややこしく

なります。

性質 1 状態 P に U,Dのいずれかの回転をした状態をQとすると、どのコーナー cに対して

も α2(Q, c) = α2(P, c)

性質 2 状態 P に F, B, R, Lのいずれかの回転をした状態をQとするとき、回転面に含まれな

いコーナー cに対して、α2(Q, c) = α2(P, c)、回転面に含まれるコーナー cに対して、そ

の位置がU面からD面またはD面からU面へ移動するならば、α2(Q, c) ≡ α2(P, c)+2

(mod 3) そうでない時、α2(Q, c) ≡ α2(P.c) + 1 (mod 3)が成り立つ。

少しややこしいですが、簡単に確かめる事が出来ます。さて、これらから次の定理が導かれ

ます。

定理 4.2 P ∼ Q ⇒ g(P ) = g(Q) (mod 3)
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これを示すには Qが P から F, B, R, L, U,D のいずれかを 1回した状態である時について示

せば十分です。複数回の回転を行っている場合は、その繰り返しで証明できます。

証明

Qが P に U,D のいずれかをした状態である時 性質 1 より全てのコーナー c に対して

α2(P, c) = α2(Q, c)であるから、

g(P ) =
∑

c∈C

α2(P, c) =
∑

c∈C

α2(Q, c) = g(Q)

Qが P に F, B,R, Lのいずれかをした状態である時 性質 2より、

ちょうど 4つのコーナー cに対して α2(Q, c) = α2(P, c),

ちょうど 2つのコーナー cに対して α2(Q, c) ≡ α2(P, c) + 1 (mod 3),

ちょうど 2つのコーナー cに対して α2(Q, c) ≡ α2(P, c) + 2 (mod 3)

であるから,

g(Q) =
∑

c∈C

α2(Q, c) ≡ 1× 2 + 2× 2 +
∑

c∈C

α2(P, c) ≡ g(P ) (mod 3)

証明終

系 4.3 g(P ) 6≡ 0 (mod 3)であれば P は解けない状態である。特に、図 3は g(P ) = 1であ

るから解けない状態である。

5 パーツの位置

次に、例えば図 4 のような状態が解けない事を示したい。この為に、少し数学の一般論を

やっておこう。

定義 5.1 有限集合 T に対して、T から T への全単射を置換という∗9。置換 φ, τ の積φ ◦ τ を、

置換 φの後に置換 τ を行う置換と定義します。

例えば φ =
(

1 2 3
3 1 2

)

と書けば、これは φ(1) = 3, φ(2) = 1, φ(3) = 2なる置換を表す事にします。

定義 5.2 上の定義において、集合 T が位数∗10nの集合である時、T の置換全体を、n次対称

群∗11といい、Sn で表す。

∗9 簡単に言うと、1, 2, · · · , nの n個の物を並べ替える操作のようなものです。アミダくじなどはひとつの置換に
なります。

∗10 元の数のことです。
∗11 群という物は集合上に演算が定義されて、それがいくつかの条件を満たしている物として定義されているんだ
けど、ここでは単なる集合と思っていても、ほとんど差し支えないと思います
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例えば φ =
(

1 2 3
3 1 2

)
, τ =

(
1 2 3
1 3 2

)

に対して、φ ◦ τ =
(

1 2 3
3 2 1

)
となります。

定義 5.3 2つの元のみを入れ替えるような置換の事を、互換と言います。つまり、
(

1 2 · · · p · · · q · · · n
1 2 · · · q · · · p · · · n

)
のような物達の事をいいます。

定理 5.4 置換 φを互換の積で表す時、その個数の偶奇は変わらない∗12

この定理の証明をとりあえず後回しにして、この事から置換に偶奇を定義する事が出来ます。

定義 5.5 置換 φ が奇数個の互換の積で表せる時奇置換、偶数個の互換の積で表せる時偶置

換という。また、φが偶置換であれば sgn(φ) = 1、奇置換であれば sgn(φ) = −1とする。

証明 さて、まず証明の概略から。Sn を二つに分けて、それを S1, S2 とします。この時上手く

S1, S2 を選べば、「S1 の置換に互換を施した置換は S2 の置換、S2 の置換に互換を施した置換

は S1 の置換」となるように出来ます。特に S2 に恒等置換

(
1 2 · · · n

1 2 · · · n

)
が含まれるよ

うにした時、S1 が奇置換、S2 が偶置換であると言う事が出来ます。後は具体的にこのように

S1,S2 を決めてやればいいだけです。

置換 φ =

(
1 2 · · · n

a1 a2 · · · an

)
に対して次のような自然数を計算します。

#{(i, j) | 1 ≤ i < j ≤ n, ai > aj } ∗13つまり、
(

1 · · · i · · · j · · · n

a1 · · · ai · · · aj · · · an

)
, ai >

aj となってるような (i, j)の組み合わせの個数です。これを転倒数という事にしましょう。こ

の値が奇数である置換を S1, 偶数である置換を S2 の元になるように S1, S2 を決めてやりま

す。この S1, S2 が先ほどの条件を満たすことは、簡単に確かめられます。こうして、偶置換と

奇置換が上手く定義されている事が確かめられました。メデタシメデタシ。

証明終

定理 5.6 sgn(φ ◦ τ) = sgn(φ)sgn(τ)

これはたいして難しくはありません。例えば、sgn(φ) = sgn(τ) = −1なら、置換 φ ◦ τ は τ

をして φをする置換、つまり奇数個の互換をしてさらに奇数個の互換をしたもの、つまり偶数

個の互換で表されるので sgn(φτ) = 1という具合です。

∗12 例えばあるアミダくじで置換を再現したとしましょう。この定理は、得られた置換だけを見れば、アミダくじ
に偶数本横線が引かれたか奇数本横線が分かるという事です。

∗13 #Aで、集合 Aの位数を表します。
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さて、ルービックキューブに関する話題に戻りましょう。パーツ 26 個の位置に注目しま

しょう。これらの位置に適当に、1, 2, · · · , 26と番号をつけておきます。本来番号 k がついて

いる位置にあるべきパーツに番号 k をつけるとします。状態 P において、位置番号から、そ

こにあるパーツ番号への写像を考えるとそれは明らかに全単射、つまり、S26の一つの置換に

なります。また、いくつかの面を回転させる事によって、位置番号 k にあるパーツが k′ の位

置へ移動するとした時、kを k′ に対応させる写像はまた全単射、つまり、面の回転は一つの置

換になり、状態 P が置換 φP ,状態 Qが置換 φQ, P から Qに至るまでに行った回転達にに対

応する置換を τ とすると、φQ = τ ◦ φP が成り立ちます。

さて、一つの面の 90◦ の回転は偶置換であることを確かめましょう。
1 2 3

4 5 6

7 8 9

7 4 1

8 5 2

9 6 3
一つの面の回転は、パーツの位置を左の図から右の図のように変えます。これは、置換(
1 2 3 4 5 6 7 8 9

7 4 1 8 5 2 9 6 3

)
に対応していて、

これは互換の積 (7 1) ◦ (9 1) ◦ (3 1) ◦ (4 2) ◦ (8 2) ◦ (6 2)で表されるので、偶置換になりま

す。さらに、いくつかの面の回転に対応する置換は一つの面の回転に対応する置換の積として

表され、定理 5.6より偶置換の積は偶置換であるから、いくつかの面の回転に対応する置換も

偶置換となります。よって次の定理が得られました！

定理 5.7 P ∼ Q ⇒ sgn(φP ) = sgn(φQ)

証明 P ∼ Qなら、Qは P からいくつかの面の回転によって得られるハズである。その面の

回転に対応する置換を τ とすると、φQ = τ ◦ φP

先ほどの議論により τ は偶置換であるから、定理 5.6により、

sgn(φQ) = sgn(τ)sgn(φP ) = 1× sgn(φP ) = sgn(φP )

証明終

系 5.8 sgn(φP ) = −1であれば P は解けない状態である。特に、図 4は sgn(φP ) = −1であ

るから解けない状態である。

6 3× 3× 3のキューブまとめ

定理 3.2,4.2,5.7をまとめておこう。

定理 6.1 P ∼ Q ⇒f(P ) ≡ f(Q) (mod 2), g(P ) ≡ g(Q) (mod 3), sgn(φP ) = sgn(φQ)
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実は、逆も成り立つ！この事を示すには、実際にルービックキューブを解くアルゴリズムを与

えなければいけない。これは、また最後に付録 (?)としてつけておくのでお楽しみに。

定理 6.2 P ∼ Q ⇔ f(P ) ≡ f(Q) (mod 2), g(P ) ≡ g(Q) (mod 3), sgn(φP ) = sgn(φQ)

系 6.3 P が解ける状態である⇔ f(P ) ≡ 0 (mod 2), g(P ) ≡ 0 (mod 3), sgn(φP ) = 1

証明 P が解ける状態であるというのは、P ∼ ☆という事であり、
f(☆) = g(☆) = 0, sgn(φ☆) = 1は容易に確かめられる。

証明終

これでとりあえず、3× 3× 3キューブの可解性について知りたい事は十分に分かりました。

これから分かる事をいくつか考えて見ましょう。まず、解ける状態はいくつくらいあるでしょ

うか？また、これは状態☆から適当に 6面を回す事によりいくつの状態が得られるかという事

と同じです。これは簡単に計算出来ます。

まず、状態がいくつあるかを考えましょう。コーナーの位置で 8!∗14,コーナーそれぞれに向

きが 3通りずつあるので、38, エッジの位置で 12!,エッジそれぞれに向きが 2通りずつあるの

で、212, よって、状態は全部で 8!× 38 × 12!× 212 = 519024039293387827200 あります。そ

のうち解ける状態は、定理 6.2より、このうちの 1
12 であり

4325003274448985600 =..4.3× 1019通り

ある事になります。

さらに余談ですが、100 年 = 36500 日 = 876000 時間 = 52560000 分 = 3153600000 秒

=..3× 109 で、100億 ×(3× 109) < 4× 1019 だから、例えば 100億人の人が居たとして、そ

の人達が 100年間、毎秒 1回ずつルービックキューブを回して新しい状態を見ていったとして

も、全ての状態を見る事はとうてい出来ない。という事になります。あの小さな立方体にそれ

だけ多くの場合が詰まっているというのはなかなか面白い事ですね。

7 n× n× n－ introduction

ルービックキューブといえば 3× 3× 3の物が一般的ですが、実は 4× 4× 4や 5× 5× 5の

物も市販されており∗15、3× 3× 3のものと区別してルービックリベンジ(図 13),プロフェッ

サーキューブ(図 14)と呼ばれます。同様に、n× n× nのキューブも考える事が出来るハズで

す。∗16。さて、これらについても可解性について考えましょう！

∗14 n! = 1× 2× · · ·nです。例えば、10! = 3628800
∗15 正確にいうと、5× 5× 5の物は現在は市販されていません。昔市販されてたのが小数ですが出回ってます。誰
か下さい（笑）

∗16 4×4×4のキューブや 5×5×5の内部構造ですら非常に複雑で、大きな nではきちんと各面が回る n×n×n

のキューブを作るのは大変困難です。最近どこぞの誰かが 6× 6× 6 の物を作ったらしいですが、市販された
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図 13: ルービックリベンジ 図 14: プロフェッサーキューブ

可解性について論じたいんですが、実は本質的な所はほとんど 3×3×3の時に示してありま

す。では、まず 4× 4× 4のキューブから見ていく事にしましょう。用語はほとんど 3× 3× 3

の時と全く同じなので分かると思います。一つだけ注意として、今までセンターキューブと呼

ばれ、面の位置を決めるような役割を果たしてきたものが、そういう役割を果たさなくなりま

す。これらは一般的に、今までと区別して、インナーキューブと呼ばれます。分かりにくい物

がありそうな時はその都度書くことにします。

8 4× 4× 4のキューブ

解ける状態である為にはどのような事が必要だろうか？まずエッジに注目します。ペアに

なるべき 2 つのエッジがあります。一旦この 2 つのみに注目しましょう。分かり易くするた

め、この 2つのキューブの正しい位置が U 面と F 面の間の辺のところにあるとしましょう。

この 2つが正しい状態にある時、図 15のように 2つのエッジに○,×の記号をつけておきま

しょう。

さて、○のエッジが×の位置に来るように移動した時、それは正しい向きにはなりません。

この事から、次の事が分かります。つまり、ある状態においてあるエッジを見ると、その正

しい位置が○と×のどちらかしかない、というように一方に決まる事が分かります。24個の

エッジの位置に適当に 1, 2, · · · , 24と番号をつけたとして、解ける状態は、24箇所に、1が正

しい位置であるようなエッジ、2が正しい位置であるようなエッジ、· · · が、それぞれ一つず
つ無くてはいけない。これが条件の一つである∗17。

りはしていません。ここではあくまでもそういう物が実現可能であるとして考えます。
∗17 実は実際のルービックリベンジでは、内部構造の関係により、分解して適当に組み立てれば必ずこの条件は満
たされるようになっています。
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図 15: エッジのペア

定理 8.1 状態 P が解ける状態⇒どの位置に対しても、その位置が正しい位置であるような
エッジがただ一つ存在する。

そして、次は 3× 3× 3の時と全く同じようにして導かれる

定理 8.2 状態 P が解ける状態⇒ P におけるコーナーの向きの和 g(P ) ≡ 0 (mod 3)

実は、これらが満たすべき全ての条件です。意外に思った方も多いでしょう。エッジの向きに

ついては、もうほとんど議論したような物ですが、今までの置換の偶奇はどうなったんでしょ

うか？実は、これにはインナーキューブが大きく関わっています。インナーキューブは、もし

元の位置に戻らなくても同じように見える事がある、つまり同色のインナーキューブの位置の

違いは無視出来るのです。こういう事情で、他の部分での置換の偶奇が合わなければインナー

キューブに互換を生じさせてやる事で調節出来るのです。

定理 8.3 4× 4× 4のキューブにおいて、状態 P が解ける状態である事と定理 8.1,8.2の条件

が成り立つ事は同値である。

同じく、その具体的な解法については最後に回します。

さて、3 × 3 × 3の時と同じように、解ける状態の個数を求めておこう。まず、エッジにつ

いて、正しい位置に対応するエッジの位置の並び替えがあり、24!の場合がある。コーナーに

ついては位置とに選び、向きを 1つを除いて自由に決めてるので、37 × 8!の場合がある。さ

らにインナーキューブについては、
24!

4!4!4!4!4!4!
の場合がある。しかし、今回は 3 × 3 × 3の

時と違って、キューブ全体の向きが固定されていない。よって、同じ状態を何度か数えてる

場合がおこりうる。さて、何回数えているかというと、ある一つのコーナーに注目する事で、

8× 3 = 24回数えてる事になる。よって、求めるべき場合の数は、

24!× 37 × 8!× 24!
4!4!4!4!4!4!

× 1
24

= 7401196841564901869874093974498574336000000000
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図 16: センターエッジ、センターキューブ

通り、約 7.4× 1045通りとなります。大変大きな数ですね。

9 2k × 2k × 2k のキューブ

さて、辺の長さが偶数であるようなキューブを考えよう。考えるといっても、4 × 4 × 4の

物となんら変わりはない。エッジには、k − 1個の系列があります。つまり、面を回転させて

もあるパーツのコーナーからの距離は変わらないからです。ある系列に属するエッジは 24個

あり、それぞれの系列のエッジに対して定理 8.1の条件が成り立ちます。また、定理 8.2の条

件も同様に成り立ちます。これは先程と同じように十分な条件にもなっています。解ける状態

の個数について考えると、エッジの状態が (24!)k−1 あり、

(24!)k−1 × 8!× 37 ×
(

24!
4!4!4!4!4!4!

)(k−1)2

× 1
24

になります。

10 2k + 1× 2k + 1× 2k + 1のキューブ

今度はほんの少し、偶数の時と違ってきます。今度は中央の列が一つに定まるからです。中

央の列の属するエッジをセンターエッジ,中央の列が交わる所をセンターキューブという事に

しましょう。(図 16)

まず、コーナーについて、前と同様に向きの条件が成り立ちます。

次に、センターエッジについて、3× 3× 3のキューブと同様の向きの条件が成り立ちます。

さらに、コーナーとセンターエッジの置換について 3× 3× 3と同様の条件が成り立ちます。

次に、他のエッジについては、2k × 2k × 2k のキューブと同様の条件が成り立ちます。
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最後に、センター以外のインナーキューブは 2k × 2k × 2k のキューブの時と同じく自由に

動かせます。

よって、可解な状態の個数は、

8!× 38 × 1
3
× 12!× 212 × 1

2
× 1

2
× (24!)k−1 ×

(
24!

4!4!4!4!4!4!

)k2−k

になります。

11 解法

さて、可解な状態において、実際にそれを解く方法を書く事にしましょう。これによって今

までの議論が完成します。新たな回転記号として、右 k 列をまとめて時計回りに（つまり、何

列か纏めて Rをする)回す事を、(kR)と表し、k 列目だけを時計回りに回す事を (kr)と表す

事にします。B や Lについても同様です。

11.1 インナー

まず、インナーの位置を揃えましょう。まず、中央の列にあるインナー達を揃えます、図 17

の○のキューブをＵ面、×のキューブをＦ面に移動しましょう。インナーキューブは、どの面

にあるかという事だけが大切だからそれで十分です。

図 17: 中央列のインナー位置合わせ
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U(kl)’U’(kl) としましょう。これにより、中央にあるインナーから順に揃えていきます。

これにより中央列のインナーが完成します。

次に他のインナーを揃えていきます。(図 18)

図 18: インナー位置合わせ

図の○のキューブをＵ面、×のキューブをＦ面に移動しましょう。(kr)U(kr)’。これの繰

り返しでインナーが完成します。

11.2 コーナー

まず、コーナーの位置及び向きを揃える方法を書く事にします。(図 19)

図 19: コーナーの位置、向き合わせ

図の○のコーナーと×のコーナーを、手順 RUR’U’R’FR2U’R’U’RUR’F’により入れ

替えられます。この時エッジに奇置換が生じるけれど、他のコーナーの位置は保存されます。
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次に向きです。○のコーナーの向きを +1,×のコーナーの向きを +2する事が出来ます。実

際の手順は、FD2F’R’D2RUR’D2RFD2F’です。これは、他のエッジの位置、向き、コー

ナーの位置、向きも保存します。

これらを繰り返す事により、８つ全てのコーナーの位置、向きを合わせる事が出来ます。

3× 3× 3のキューブより大きなキューブについても同様です。

11.3 センターエッジ

図 20: エッジ位置、向き合わせ

コーナーが完成しているなら、センターエッジが解ける時、偶置換が出来れば良いので、

A → B，B → C,C → A のような置換を何度もする事でエッジの位置を合わせる事が出来ま

す。(図 20) 具体的な手順は、F2U’LR’F2L’RU’F2です。

次に向きを合わせましょう。A の位置にあるエッジと B の位置にあるエッジの向きを +1

する為に、R’U’DB2U2D2F’U’FU2D2B2UD’RU とします。これによりセンターエッ

ジが完成します。
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11.4 エッジ

最後にエッジの互換をしましょう。(図 21)

図 21: エッジ位置合わせ

Aと B を入れ替える為に、(kR)2(kB)2(kR)2(kr)U2(kr)U2(kr)U2(kr)U2(kr)

F2(kl)’B2(kl)F2(kl)’B2(kl)(kR)2(kB)2(kR)2 とします。A と C を入れ替える為に、

(kr)U2(kr)U2(kr)U2(kr)U2(kr)F2(kl)’B2(kl)F2(kl)’B2(kl)としましょう。

12 あとがき

長くなりましたが、これでおしまいです。長い間ありがとうございました。数学的、という

より、パズル的な要素が多い論文でしたが、そりゃあ扱ってる物がパズルだから仕方ありませ

ん。実は、昨年１０月頃から筆者自身がルービックキューブにハマってまして、ふと、どうい

う時が可解でどういう時が非可解なんだろうと思った事がきっかけです。こういう身近な所か

らも色々数学を見つけて遊ぶ事が出来るというような事が少しでも伝わってくれれば大変有難

い事です。

なお、この論文を LATEXで書くのに、

LATEX2ε 美文書作成入門　 (奥村晴彦 著 技術評論社)

を参考にしました。
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最後に、部誌の編集などを担当してくれた中学３年生の伊藤君に感謝。

この論文に関する意見は、nisimotomasaki@funifuni.netまでお願いします。

本当に最後まで読んで下さってありがとうございました！
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