
約数の和に関する考察

西本将樹

1 はじめに

さて、この記事でどんな事を扱っているかという事を少し説明しておきま

しょう。この記事では、自然数 aが与えられた時、約数の和が aの冪の約数

となるような自然数について、特に、nの素因数の形や、nとしてありうるも

のの個数などについて考察します。誤りを見つけた人は是非知らせてくださ

い。また、常体と敬体の混同などといった文法的な問題は見逃してください。

少し言葉の意味について説明しておきます。

約数 自然数 nに対してそれを割り切る自然数を nの約数といいます。

a | b aが bの約数である事を a | bで表し、そうでない事を a |/bで表します。

素数 自然数 pが素数であるとは、pが 1, p以外の約数を持たない事をいい

ます。

素因数 自然数 nの約数のうち素数であるものを nの素因数といいます。

冪 aの冪 (べき)とは、an(n ≥ 1)の形をした自然数の事をいいます。

代数的数 αがある整数係数多項式 anxn + an−1x
n−1 + · · ·+ a1x + a0の根に

なる時、αを代数的数といいます。

a ≡ b (mod p) a− bが pで割り切れる時このように表記します。

(a, b) aと bの共通の約数のうち最大のもの (最大公約数)をこのように表
します。

和記号
∑
例えば

n∑

k=1

ak は a1 + a2 + · · ·+ anを意味します。k = 1から始め

て nまで動かした時の ak の値の和をとるという意味です。

積記号
∏
例えば

n∏

k=1

ak は a1 × a2 × · · · × an を意味します。
∑
と対にする

と分かりやすいでしょう。

2 素因数分解と約数の和

2.1 素因数分解

次の定理は整数論の基本定理と言われている定理である。
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定理 2.1 (整数論の基本定理) 全ての自然数は素数の積に一意的に表す事が

できる。

(例 : 30 = 2× 3× 5, 2002 = 2× 7× 11× 13)

この定理は当たり前のように思えますが、実は大変重要な定理なのです。数

学では整数と同じように素数とか割り切れるとかいう概念を定義出来る集合

を扱う事がありますが、その時に素因数分解の一意性が成り立つのと成り立

たないのとでは様子が大きく異なるのです。定理 2.1より、任意の自然数は
相異なる素数 p1, p2, · · · を用いて

n = pe1
1 pe2

2 · · ·

と表す事が出来る。

2.2 約数の和

nの約数の和を S(n)で表すことする。nの素因数分解を

n = pe1
1 pe2

2 · · · pem
m

とする。aを nの約数とする時、aの素因数分解は

a = pd1
1 pd2

2 · · · pdm
m (0 ≤ di ≤ ei) (1)

の形をしており、また (1)の形の数はみな nの約数である。

S = (1 + p1 + · · ·+ pe1
1 )(1 + p2 + · · ·+ pe2

2 ) · · · (1 + pm + · · ·+ pem
m ) (2)

を展開した各項は (1)の形をしており、(1)の形の数はみなその項に一度ずつ
現れるから、S = S(n)である。等比数列の和の公式

1 + p + p2 + · · ·+ pe =
pe+1 − 1

p− 1

を利用して (2)式を整理すると、

S =
pe1+1
1 − 1
p1 − 1

pe2+1
2 − 1
p2 − 1

· · · p
em+1
m − 1
pm − 1

となる。素数 pと整数 kに対して、f(p, k) =
pk − 1
p− 1

と表す事にすると、次

の定理を得る。

定理 2.2 S(n) =
m∏

i=1

f(pi, ei + 1)が成り立つ。
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3 準備

これからいくつかの問題について考察するが、この章ではその準備として、

少し一般的な議論をしておこう。

定理 3.1 nが素数 pでちょうど e回割り切れるとする。rを e + 1の約数と
する。

この時 f(p, r)は S(n)の約数である。

定理 2.1より、
pe+1 − 1

p− 1
は S(n)の約数。pr − 1は pe+1 − 1の約数であるか

ら、f(p, r)は、f(p, e + 1) =
pe+1 − 1

p− 1
の約数なので、これらを併せて定理

3.1を得る。

定理 3.2 xa ≡ 1 (mod p), xb ≡ 1 (mod p)が成り立つとすると、
x(a,b) ≡ 1 (mod p)が成り立つ。

ある自然数m, nが存在して、(a, b) = ma− nbとなる事に注意する。

x(a,b) × xnb ≡ xma (mod p)より、x(a,b) × (xb)n ≡ (xa)m (mod p)

x(a,b) × 1 ≡ 1 (mod p) ... x(a,b) ≡ 1 (mod p)

よって示された。

定理 3.3 (フェルマーの小定理) pを素数とする時任意の自然数 aに対して

ap ≡ a (mod p)が成り立つ。特に a 6≡ 0 (mod p)なら ap−1 ≡ 1 (mod p)が
成り立つ。

この定理には色々な証明がありますが、ここでは帰納法を使って示しておき

ます。

a = 1で成り立つのは明らか。
a = kで成り立つと仮定する。

(k + 1)p =
p∑

i=0

pCik
iで、pCiは 1 ≤ i ≤ p− 1に対して pの倍数になるから

(k + 1)p ≡ kp + 1 ≡ k + 1 (mod p)よって a = k + 1でも成り立つ

よって数学的帰納法により任意の aに対して成立する。

また、定理の後半部分はこれから直接分かる。

定理 3.4 a− 1と
ar − 1
a− 1

の最大公約数は rの約数である。

多項式
xr − 1
x− 1

= xr−1 + xr−2 + · · ·+ x + 1を x− 1で割った余りが rだから

である。
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定理 3.5 p, qを奇素数とし、a ≡ 1 (mod p)とする。p
∣∣∣a

q − 1
a− 1

なら p = qで

あり、その時
aq − 1
a− 1

≡ p (mod p2)である。

定理の前半部分は定理 3.4の直接の結果である。後半部分を証明しよう。a =
cp + 1とする。

ap − 1
a− 1

≡
p−1∑

i=0

(cp + 1)i ≡
p−1∑

i=0

i∑

j=0

iCj(cp)j

≡
p−1∑

i=0

(iC0 + iC1cp) ≡
p−1∑

i=0

(1 + icp) ≡ p + cp× p(p + 1)
2

≡ p + p2 × c(p + 1)
2

≡ p (mod p2)

よって成り立つ。

定理 3.6 p, q, rを素数とする。f(p, r2)は qの冪とは成り得ない。

f(p, r)は f(p, r2)の約数なので、この時 f(p, r)も q の冪でなければならな

い。

r = 2の時 f(p, r2) = (p+1)(p2 +1)でありこれが qの冪であるから p+1も
p2 + 1も qの冪であるが、これらの最大公約数は高々2なので、q = 2
である。

この時 p2 + 1 ≥ 22 + 1 = 5であるから、p2 + 1 ≡ 0 (mod 4)であるが、
これは不可能である。

r 6= 2の時 f(p, r)が q の冪であることより、pr ≡ 1 (mod q)。a = pr とし

て定理 3.4を適用すれば、f(p, r2)は qで高々1回しか割り切れない事
が分かる。

よって、f(p, r2) = qでなければならないが、q = f(p, r2) > f(p, r) ≥ q

だからこれは不可能である。

4 S(n) = 2m

この章では S(n)が 2の冪になる自然数 nがどのような数かについて調べ

てみる。

まず、f(p, r)が 2の冪となるような素数 p, rについて考察する。

p 6= 2である事は明らかである。
よって、p− 1は偶数。f(p, r)は偶数であるから、定理 3.5により、r = 2で
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ある。

この時 f(p, r) = p + 1が 2の冪であるから、pは 2k − 1型の素数である。
nを割り切る素数 pをとり、nが pでちょうど e回割れるとする。

e + 1の適当な素因数を rとする。この時定理 3.1より、f(p, r)は 2の冪であ
るので、r = 2で pは 2k − 1型の素数である。
よって e + 1は 2の冪である。定理 3.6より、e + 1は 4で割り切れないから
e + 1 = 2で、e = 1
以上より、nは相異なる 2k − 1型の素数の積である。

定理 4.1 S(n)が 2の冪なら、nは相異なる 2k − 1型の素数の積である。

ところで、2k−1型の素数は、メルセンヌ (Mersenne)素数と呼ばれている。

2k − 1が素数なら kが素数である事は容易に示せるが、kが素数でも 2k − 1
は素数とは限りません。例えば 211−1 = 2047 = 23×89です。メルセンヌ素
数がどのくらい多くあるか (例えば有限個か無限個か)は知られていません。
メルセンヌ素数は小さい方から順に、

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, · · · となっています。
現在知られている最大のメルセンヌ素数は 39番目のメルセンヌ素数で、
213466917 − 1という、4053946桁の数である。この素数は昨年 11月に発見さ
れた物で、(恐らく）現在知られている最大の素数でもあります。
405万桁というのはなかなか想像出来ませんが、我々が大きいと感じる (であ
ろう)1兆でさえ、たった 13桁の数であり、405万桁とはその数十万倍もの長
さであり、想像出来ないくらい大きな数である事が分かるでしょう。

この事実より、約数の和が 2の冪であるような自然数が少なくとも 239− 1個
ある事が分かります。

5 S(n) = 3m

同じ事を、3の冪の場合を調べてみよう。実は S(n)が 3の冪となるような
nは 2しか無い。準備に手間をかけた甲斐あって、簡単にできる。
まず f(p, q)が 3の冪となる素数 p, qを考察する。

p 6= 3は明らかである。今 q 6= 2としよう。
pq − 1 ≡ (p− 1)f(p, q) ≡ 0 (mod 3)より、pq ≡ 1 (mod 3)
フェルマーの小定理より、p2 ≡ 1 (mod 3)
よって、定理 3.2により、p ≡ p(2,q) ≡ 1 (mod 3)

3
∣∣∣p

q − 1
p− 1

かつ p ≡ 1 (mod 3)だから、定理 3.5より、q = 3であり、

f(p, q) ≡ 3 (mod 9)となる。f(p, q)は 3の冪だから f(p, q) = 3。
一方 f(p, 3) ≥ f(2, 3) = 7 > 3だから、これは不可能。
つまり、q = 2である。定理 3.6より、f(p, 22)は 3の冪でない。
よって、nを割り切る適当な素数を pとし、
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nが pでちょうど e回割り切れるとすれば、

e + 1は 2以外の素因数を持たず 22 で割り切れないから e + 1 = 2
f(p, 2) = p + 1が 3の冪だから pは偶数なので、p = 2
よって n = 2である。

定理 5.1 自然数 nの約数の和が 3の冪であるならば、n = 2である。

さて、上の証明を少し変形すれば、次の定理を得る。

定理 5.2 qを 5以上の 2k + 1型の素数とする。S(n)が qの冪となるような

nは存在しない。

先ほどと同じ手順をたどればよい。q = 2k + 1とする。
f(p, r)が qの冪となるような素数 p, rを考察する。

p 6= qは明らか。今 q 6= 2と仮定する。
pr − 1 ≡ (p− 1)f(p, r) ≡ 0 (mod q)より、pr ≡ 1 (mod q)
フェルマーの小定理より、p2k ≡ 1 (mod q)よって定理 3.2により、
p ≡ 1 (mod q)

q
∣∣∣p

r − 1
p− 1

かつ p ≡ 1 (mod q)だから、定理 3.5より、r = qであり、

f(p, q) ≡ q (mod q2)となる。f(p, r)は qの冪だから f(p, r) = q

一方 f(p, r) ≥ f(2, q) > qだから、これは不可能。

つまり、q = 2である。定理 3.6より、f(p, 22)は qの冪でない。

よって、nを割り切る適当な素数を pとし、nが pでちょうど e回割り切れる

とすれば、e + 1は 2以外の素因数を持たず 22で割り切れないから e + 1 = 2
である。

f(p, 2) = p + 1が qの冪。この時 pは 4以上の偶数なので素数ではありえな
い。よってこのような nは存在しない。

2k + 1型の素数という物を考えたが、これは フェルマー (Fermat)素数

と呼ばれている。この時ある整数 nがあって k = 2n となることが簡単に示

せる。k = 2n × l(l:奇数)とすると 2k + 1は 22n

+ 1で割り切れるのである。
Fn = 22n

+ 1としよう。昔フェルマーは Fn は全ての非負整数に対して素数

であると予想した。しかしこれは間違いであることがオイラー (Euler)によっ
て示された。

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537257は素数であるが、
F5 = 4294967297 = 641× 6700417となるのである。
実際 n ≥ 5で、Fn が素数となる nは未だ見つかっていない。

Fn が無限個の nに対して素数となるか。

Fn が無限個の nに対して合成数となるか。

などはいずれも難しい未解決問題である。
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フェルマー素数には面白い性質がある。例えば、正 p角形 (p:素数)が定規
とコンパスで作図出来る為の必要十分条件は pがフェルマー素数であること

が知られているが、ここでは深くは立ち入らない事にする。

6 S(n) = qm

さて、奇素数 qが与えられた時に約数の和が qの冪となるような自然数 n

について考察する。ここでは、解が高々有限個しかないことを証明する。こ

の証明はなかなか苦労した。

さて、定理 3.1や定理 3.6から、S(n)が qの冪になる nが有限個である事

と f(p, r)が qの冪となる素数 p, rの組が有限個である事は有限個である事は

同値である。

f(p, r)が qの冪であるとする。p 6= qは明らか。

今 r |/q − 1を仮定する。pr ≡ 1 (mod q)である。
フェルマーの小定理より、pq−1 ≡ 1 (mod q)
定理 3.2より、p ≡ 1 (mod q)
定理 3.5より、r = qであり、f(p, r) = qとならなければならないが、

f(p, r) ≥ f(2, r) > rだからこれは不可能。よって r | q − 1
よって rとして考えられる物は有限個である。また r = 2はありえない。
今 f(p, r)が qの冪となる素数 p, rの組が無限個あると仮定する。この時あ

る r があって、f(p, r)が q の冪となる pが無限個存在する。n = r − 1 ≥ 2
とする。f(p, r) = qmとなる組 p, rをとり、mの (mod n)での値によって、
p, rの組を n個に分けると、ある 0 ≤ l ≤ n−1があって、f(p, r) = qm,m ≡ l

(mod n)なる p, rの組は無限個であることが分かる。pn < f(p, r) < (p+1)n

であるから l = 0である事はありえない。C1 = ql とする。この時

1 + p + p2 + · · ·+ pn = C1x
n(ただし xは qの冪）

が無限個の解 p, xを持つ事になる。これが不可能である事を示せばよい。y =
np + 1とすると、

nn + nnp + · · ·+ nnpn = C1n
nxnであるから、

nn + nn−1(y − 1) + · · ·+ (y − 1)n = C2x
n(C2 = C1n

n)

左辺を展開すると、ある整数 a0, a1, · · · , an − 1があって、

a0 + a1y + · · ·+ an−2y
n−2 + an−1y

n−1 + yn = C2x
n

an−1 = 0である事はすぐに分かる。よって

a0 + a1 + · · ·+ an−2y
n−2 = C2x

n − yn
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C3 = max(|a0|, |a1|, · · · , |an−2|)とすると、
|左辺 | < C3(y + 1)n−2 < 2n−2C3y

n−2

C4 =
2n−2C3

C2
とする。t =

x

y
とする。この時

∣∣∣tn − 1
C2

∣∣∣ <
C4

y2

C2 は自然数の n乗ではないから、tn − 1
C2

= 0は有理数解を持たず、また、

d

dt

(
tn − 1

C2

)
= tn−1 だから、tn − 1

C2
= 0は重解を持たない。

tn − 1
C2

= 0の解を α1, α2, · · · , αn とする。この時

∣∣∣tn − 1
C2

∣∣∣ =
∣∣∣(t− α1)(t− α2) · · · (t− αn)

∣∣∣ <
C4

y2

t =
x

y
だから、

∣∣∣
(

x

y
− α1

)(
x

y
− α2

)
· · ·

(
x

y
− αn

) ∣∣∣ <
C4

y2

これが無限個の解 (x1, y1)(x2, y2) · · · (xk, yk) · · · を持つとする。
ただし |y1| < |y2| < |y3| < · · ·
k →∞の時 |yk| → ∞だから、

(
xk

yk
− α1

)(
xk

yk
− α2

)
· · ·

(
xk

yk
− αn

)
→ 0

うまく無限列 xk, yk を取り直せばある iが存在して、
∣∣∣xk

yk
− αi

∣∣∣ → 0である。

α1, α2, · · · , αn の番号を適当に付け直す事により、i = 1としてよい。
d = min

∣∣∣αi1 − αi2

∣∣∣(i1 6= i2)とする。この時十分大きなN を取れば、k > N

なら ∣∣∣xk

yk
− α1

∣∣∣ < d/2

この時 dの取り方より、
∣∣∣xk

yk
− αi

∣∣∣ > d/2(i 6= 1)

よって、 ∣∣∣xk

yk
− α1

∣∣∣ <
C4

y2
×

(
2
d

)n−1

C5 = C4 ×
(

2
d

)n−1

とすると、
∣∣∣xk

yk
− α1

∣∣∣ <
C5

y2
k

ここで次の定理を用いる。
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定理 6.1 (リドゥ(Ridout)の定理) α 6= 0を代数的数とする。
P1, · · · , Ps, Q1, · · · , Qt を相異なる素数 , d > 0, 0 ≤ λ ≤, 0 ≤ ρ ≤ 1とする。
p, qを次の形の整数とする。

p = p∗Pσ1
1 · · ·P σs

s , q = q∗Qτ1
1 · · ·Qτt

t

ただし σ1, · · · , σs, τ1, · · · , τt は非負整数で、p∗, q∗ は

0 < |p∗| ≤ dpλ, 0 < |q∗| ≤ dqρ

を満たす。この時 κ > λ + ρならば、不等式

0 <
∣∣∣α− p

q

∣∣∣ <
1
qκ

を満たす p, qは有限個しかない。

次のように言い換える事も出来る。α, κ, λ, ρ, d, P1, · · · , Ps, Q1, · · · , Qt の

みに依存する正定数 cが存在し、不等式
∣∣∣α− p

q

∣∣ >
c

qκ

が上の形の全ての p, qに対して成り立つ。

この定理の証明は非常に難しく (私が解説して欲しいです。)、ここで紹介す
る事は出来ない。λ = ρ = 1の場合は、1955年に証明された次の定理である。

定理 6.2 (ロス (Roth)の定理) αを n(≥ 2)次代数的数、κ > 2とすると、
不等式

0 <
∣∣∣α− p

q

∣∣∣ <
1
qκ

を満たす p, qは有限個しかない。

α1 はその決め方から代数的数であり、yk は qの冪だから、

d = 1, x∗k = xk, Y = q, y∗k = 1, λ = 1, ρ = 0, κ = 1.5とすると、これらはリ
ドゥの定理の条件を全て満たすので、ある正定数 C6 が存在して、

∣∣∣xk

yk
− α1

∣∣∣ >
C6

y1.5
k

一方
∣∣∣xk

yk
− α1

∣∣∣ <
C5

y2
k

であったから、

C6

y1.5
k

<
∣∣∣xk

yk
− α1

∣∣∣ <
C5

y2
k

よって y0.5
k <

C5

C6
である。C =

C2
5

C2
6

とすると、

yk < C
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が成り立つ。C は (xや yに依存しない)定数である。一方 yk →∞だからこ
れは矛盾である。

よって f(p, r)が qの冪となるような p, rの組は高々有限個であるので、約数

の和が qの冪となる自然数も高々有限個であることが示された。

定理 6.3 qを奇素数とするとき、約数の和が qの冪となるような自然数は高々

有限個しか存在しない。

非常に長かったが、いつのまにか示すべき事が得られた。リドゥの定理とは

凄い物だと感服させられたが、この問題にこれほどの定理が必要なのかどう

かは疑問である。初等的な証明を得た人は是非教えてください！

7 S(n) = am(a :奇数)

前章では奇素数 qに対して S(n)が qの冪となる nについて考察した。それ

を振り返ってみると、リドゥの定理の条件の強さから、もう少し頑張れば qの

部分を任意の奇数 a = qe1
1 qe2

2 · · · qem
m に拡張出来そうな気がしてくる。この時

f(p, r)は q1, · · · , qm 以外の素因数を持たない。さて、証明に入りましょう。

aの冪の約数全体の集合を ?とする。

S(n) ∈ ?となる nが無限に多く存在したと仮定する。この時 f(p, r) ∈ ?な

る f(p, r)が無限に多く存在することになる。
S(n) > nより S(n)が素数 q1, · · · , qmのいずれかの 2乗で割り切れない物は
有限個であるから、ある iがあって、f(p, r) ∈ ?で q2

i で割り切れるような p, r

の組は無限に多くある。特に q1, · · · , qmの添え字を適当に付け直せば、i = 1
としてもよい。以後 q1 をただ単に qと書くことがある。

?の元で q2 で割り切れる物全体の集合を ??とする。

f(p, r) ∈ ??なる p, rが無限個あるとして矛盾を示そう。

f(p, r) ∈ ??なる p, rを考察の対象とする。rを素数とする。

f(p, re) ∈ ??なる eが無限個あったと仮定する。

fe =
pre+1 − 1
pre − 1

とする。この時各 e に対して fe は、q1, · · · , qm 以外の素因数を持たない。

e1 < e2 に対して

(fe1 , fe2) =

(
pre1+1−1

pre1 − 1
,
pre2+1 − 1
pre2 − 1

)
≤

(
pre2 − 1,

pre2+1 − 1
pre2 − 1

)

定理 3.4より (fe1 , fe2) ≤ rであり、さらに定理 3.5より、fe は高々1回しか
rで割り切れない。

fe > rだから feは r以外の約数を持つ。そのひとつを xeとすると、xe = xe′

なら先程の議論から e = e′ である。
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よって、xeは無限個の値を持つ事になるが、feは、q1, · · · , qm以外の素因数

を持たないので、これは矛盾である。よって、各 p, rに対して f(p, re) ∈ ??

を満たすような eは高々有限個である。

次に f(p, r) ∈ ??なる rが高々有限個である事を示そう。この場合は rが

q − 1の約数である事が分かる。rが q − 1の約数で無いとして矛盾を示せば
よい。
pr − 1
p− 1

≡ 0 (mod q)だから pr ≡ 1 (mod q)

フェルマーの小定理より、pq−1 ≡ 1 (mod q)
よって定理 3.2より、p ≡ 1 (mod q)

よって定理 3.5より、
pr − 1
p− 1

≡ 0 (mod q2)となる事はありえない。よってこ

れは不可能なので、rは q − 1の約数である。また、r 6= 2である事は明らか
である。

rとしてありうる値は有限個である事が示された。よって f(p, r) ∈ ??を満

たすような p, rの組が無限個存在するとすれば、ある rがあって、f(p, r) ∈ ?

を満たすような pが無限に多く存在する。

n = r − 1とする。r に対する無限個の f(p, r) ∈ ??を満たす pに対して

f(p, r) = qe1
1 qe2

2 · · · qem
m として、e1, · · · , emの (mod n)の値の組み合わせは

mn 通りであるから、

ある l1, · · · , lm(0 ≤ l1, · · · , lm ≤ n)が存在して、無限に多くの pに対して

f(p, r) = qe1
1 qe2

2 · · · qem
m (ei ≡ li (mod n))

となる。pn < f(p, r) < (p + 1)n であるから右辺はいかなる整数の n乗でも

無いので、a = ql1
1 · · · qlm

m とすると aはいかなる自然数の n乗でも無い。右辺

は ayn とかける (ただし yは q1, · · · , qm 以外の素因数を持たない。)よって

1 + p + · · ·+ pn = ayn(ただし yは q1, · · · , qm以外の約数を持たない)

となる。先ほどの章と全く同じ議論が適用することで、出来る。

つまり無理数の代数的数 αと正定数 C が存在して、
∣∣∣x
y
− α

∣∣∣ <
C

y2
を満たす

整数 x, yが無限個存在する。ここで x, yにリドゥの定理を適用すればいいの

である。これから前章と同様にして矛盾が示せるのである。

定理 7.1 a を任意の奇数とする。約数の和が a の冪となるような自然数は

高々有限個しか存在しない。

これでこの章は終わりである。

8 S(n) = 10m

さて、一般の奇数 aに対して約数の和が aの冪となる自然数が有限個であ

る事が示された。この章では偶数の例として自然数 nの約数の和が 10の冪
となるような nについて考察してみよう。

11



f(p, r)が 2, 5以外の素因数を持たないような素数 p, rについて考察する。

f(p, r)が 2の冪となる時 r = 2となる事は定理 4.1で述べた通りである。ま
た、f(p, r)が 5の冪となるような素数 p, rが存在しない事は定理 5.2で述べ
た通りである。

f(p, r)が 2でも 5でも割り切れ他の素数では割り切れないような素数 p, rに

ついて考察する。p 6= 2である事は明らか。よって p ≡ 1 (mod 2)なので定
理 3.4より、r = 2である。
よって p+1は 2, 5以外の素因数を持たない。よって nの適当な素因数を pと

し、nが pでちょうど e回割り切れるとすれば pは 2, 5以外の素因数を e + 1
は 2の冪である。今 e +1 > 2であるとすると、e + 1は 4で割り切れるから、
定理 3.1より、f(p, 4)は 2, 5以外の素因数を持たない。

よって
p4 − 1
p2 − 1

は 2, 5以外の素因数を持たない。定理 5.2, 4.1より、これが 2, 5

の一方だけで割り切れる事は不可能。よって
p4 − 1
p2 − 1

は 10の倍数である。一

方定理 3.4より、(
p4 − 1
p2 − 1

,
p2 − 1
p− 1

)
≤

(
p4 − 1
p2 − 1

, p2 − 1
)
≤ 2

である。よって、f(p, 2)は 5で割り切れないから 2の冪なので、pはメルセ

ンヌ素数である。

p = 2k−1とする。
p4 − 1
p2 − 1

は 2で 1回しか割り切れないので、ある lがあって、

p4 − 1
p2 − 1

= 2× 5lとなる。p2 + 1 = 22k − 2k+1 + 2であり、
p4 − 1
p2 − 1

= p2 + 1で

あるから、5l−1 = 22k−1−2k +1 = 2k(2k−1−1) よって 5l−1は 2で k回割

り切れる。5l− 1が 2でちょうど何回割れるかについて考察する。l = 2el′(l′:

奇数)とする。定理 3.4から
5l − 1
52e − 1

は奇数であるから、5l − 1が 2で割り切

れる回数は 52e − 1が 2で割り切れる回数に等しい。この回数を ae とする。

a1 = 2は明らか。また定理 3.4より、
52e+1 − 1
52e − 1

は 2で一度だけ割り切れる。

よって、ae+1 = ae + 1である。よって ae = e + 1が成り立つ。
5l−1は 2で k回割り切れるのであったから、al = l+1 ≥ kなので、l ≥ k−1
である。よって、

2k(2k−1 − 1) = 5l ≥ 5k−1

4k

2
= 22k−1 > 2k(2k−1 − 1) ≥ 5k−1 ...2 > (

5
4
)k−1

よって k = 2, 3, 4であるが、k = 4の時は 2k − 1 = 15は素数ではない。よっ
て、k = 2, 3であり、p = 3, 7である。この時 f(p, 2e)が 2, 5以外の素因数を
持たないような eは 1または 2である事は容易に確認出来る。よって次の定
理を得る。

定理 8.1 約数の和が 10の冪の約数となる自然数 nの適当な素因数を pとす

る。
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pはメルセンヌ素数か 2i5j − 1型の素数であり、p 6= 3, 7であれば、nは pで

1回しか割れない。p = 3, 7であれば、nは pでちょうど 1回または 3回割り
切れる。

約数の和が 10の冪となるような自然数をいくつか求めてみよう。S(pr−1)の
値を計算すると S(3) = 4, S(33) = 40, S(7) = 8, S(73) = 400, S(19) = 20,

S(79) = 80, S(1249) = 1250, S(499) = 500などを組み合わせて積が 10の冪
になるようにすると、

n = 7× 1249, 3× 19× 1249, 343× 19× 1249などが得られる。
このような自然数 n が有限個か無限個か決定する問題は非常に難しいだ

ろう。2k − 1型の素数でさえどのくらいあるのか分かっていないのだから、
2i5j − 1型の素数などはより難しい問題であろうと思われる。

9 S(n) = am(a :偶数)

さて、同様に 10を一般の偶数 aに変えてみるとどのような事が言えるだ

ろう。実は次の事がいえる。

定理 9.1 nを、S(n)が aの冪の約数となるような自然数とする。このよう

な nを割り切る素数の平方としてありうる物は高々有限個しか存在しない。

a = 10である場合は、nを割り切る素数の平方としてありうる物は、32, 72

であった。

さて、このような素数が無限に多く存在したとする。

a = 2eqe1
1 · · · qem

m

とする。f(p, r)が q1, · · · , qm以外の素因数を持たないような p, rの組は有限

個 (定理 7.1)であったから、この時 f(p, r)が偶数で 2, q1, · · · , qm以外の素因

数を持たないような物が無限に多くある事になる。よって r = qe(q:素数)で
あって、f(p, r)が偶数で 2, q1, · · · , qm以外の素因数を持たないような物が無

限に多くある事になる。この時 p 6= 2は明らかである。今 qが奇数であると

すると、定理 3.4より、
pr − 1
p− 1

は偶数ではない。よって、q = 2

よって、f(p, 4)が 2, q1, · · · , qm以外の素因数を持たないような pが高々有限

個である事を示せばよい。このような pが無限個あるとすれば、今までやっ

てきたように、リドゥの定理から矛盾を示せる事は前の証明を模倣すれば容

易に分かるだろう。そうして定理 9.1が得られる。

10 あとがき

最後までお付き合い下さってありがとうございます。記事の出来としては、

結構良い結果が得られて満足しています。説明が分かりにくい所が (特に最後
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の方はページ数の都合からある程度省略したので)あるかもしれません。そ
の時はご遠慮なく尋ねて下さい。若しくは

nisimotomasaki@funifuni.netまでメール下さい。また、より簡単な証明や別
証明やよりよい結果を見つけた人も是非教えて下さい。お待ちしております。

また、今回の記事を書くにあたって、

無理数と超越数 (塩川宇賢 著)

などが大変役に立ちました。リドゥの定理の証明なども載っています。興味

のある方は是非御覧下さい。
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